Series¶
Constructor¶
Series([data, index, dtype, name, copy, …]) |
One-dimensional ndarray with axis labels (including time series). |
Attributes¶
Axes
Series.index |
The index (axis labels) of the Series. |
Series.array |
The ExtensionArray of the data backing this Series or Index. |
Series.values |
Return Series as ndarray or ndarray-like depending on the dtype. |
Series.dtype |
Return the dtype object of the underlying data. |
Series.ftype |
(DEPRECATED) Return if the data is sparse|dense. |
Series.shape |
Return a tuple of the shape of the underlying data. |
Series.nbytes |
Return the number of bytes in the underlying data. |
Series.ndim |
Number of dimensions of the underlying data, by definition 1. |
Series.size |
Return the number of elements in the underlying data. |
Series.strides |
(DEPRECATED) Return the strides of the underlying data. |
Series.itemsize |
(DEPRECATED) Return the size of the dtype of the item of the underlying data. |
Series.base |
(DEPRECATED) Return the base object if the memory of the underlying data is shared. |
Series.T |
Return the transpose, which is by |
Series.memory_usage(self[, index, deep]) |
Return the memory usage of the Series. |
Series.hasnans |
Return if I have any nans; enables various perf speedups. |
Series.flags |
(DEPRECATED) |
Series.empty |
|
Series.dtypes |
Return the dtype object of the underlying data. |
Series.ftypes |
(DEPRECATED) Return if the data is sparse|dense. |
Series.data |
(DEPRECATED) Return the data pointer of the underlying data. |
Series.is_copy |
Return the copy. |
Series.name |
Return name of the Series. |
Series.put(self, \*args, \*\*kwargs) |
(DEPRECATED) Apply the put method to its values attribute if it has one. |
Conversion¶
Series.astype(self, dtype[, copy, errors]) |
Cast a pandas object to a specified dtype dtype. |
Series.infer_objects(self) |
Attempt to infer better dtypes for object columns. |
Series.copy(self[, deep]) |
Make a copy of this object’s indices and data. |
Series.bool(self) |
Return the bool of a single element PandasObject. |
Series.to_numpy(self[, dtype, copy]) |
A NumPy ndarray representing the values in this Series or Index. |
Series.to_period(self[, freq, copy]) |
Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). |
Series.to_timestamp(self[, freq, how, copy]) |
Cast to DatetimeIndex of Timestamps, at beginning of period. |
Series.to_list(self) |
Return a list of the values. |
Series.get_values(self) |
(DEPRECATED) Same as values (but handles sparseness conversions); is a view. |
Series.__array__(self[, dtype]) |
Return the values as a NumPy array. |
Indexing, iteration¶
Series.get(self, key[, default]) |
Get item from object for given key (ex: DataFrame column). |
Series.at |
Access a single value for a row/column label pair. |
Series.iat |
Access a single value for a row/column pair by integer position. |
Series.loc |
Access a group of rows and columns by label(s) or a boolean array. |
Series.iloc |
Purely integer-location based indexing for selection by position. |
Series.__iter__(self) |
Return an iterator of the values. |
Series.iteritems(self) |
Lazily iterate over (index, value) tuples. |
Series.items(self) |
Lazily iterate over (index, value) tuples. |
Series.keys(self) |
Return alias for index. |
Series.pop(self, item) |
Return item and drop from frame. |
Series.item(self) |
Return the first element of the underlying data as a python scalar. |
Series.xs(self, key[, axis, level, drop_level]) |
Return cross-section from the Series/DataFrame. |
For more information on .at, .iat, .loc, and
.iloc, see the indexing documentation.
Binary operator functions¶
Series.add(self, other[, level, fill_value, …]) |
Return Addition of series and other, element-wise (binary operator add). |
Series.sub(self, other[, level, fill_value, …]) |
Return Subtraction of series and other, element-wise (binary operator sub). |
Series.mul(self, other[, level, fill_value, …]) |
Return Multiplication of series and other, element-wise (binary operator mul). |
Series.div(self, other[, level, fill_value, …]) |
Return Floating division of series and other, element-wise (binary operator truediv). |
Series.truediv(self, other[, level, …]) |
Return Floating division of series and other, element-wise (binary operator truediv). |
Series.floordiv(self, other[, level, …]) |
Return Integer division of series and other, element-wise (binary operator floordiv). |
Series.mod(self, other[, level, fill_value, …]) |
Return Modulo of series and other, element-wise (binary operator mod). |
Series.pow(self, other[, level, fill_value, …]) |
Return Exponential power of series and other, element-wise (binary operator pow). |
Series.radd(self, other[, level, …]) |
Return Addition of series and other, element-wise (binary operator radd). |
Series.rsub(self, other[, level, …]) |
Return Subtraction of series and other, element-wise (binary operator rsub). |
Series.rmul(self, other[, level, …]) |
Return Multiplication of series and other, element-wise (binary operator rmul). |
Series.rdiv(self, other[, level, …]) |
Return Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rtruediv(self, other[, level, …]) |
Return Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rfloordiv(self, other[, level, …]) |
Return Integer division of series and other, element-wise (binary operator rfloordiv). |
Series.rmod(self, other[, level, …]) |
Return Modulo of series and other, element-wise (binary operator rmod). |
Series.rpow(self, other[, level, …]) |
Return Exponential power of series and other, element-wise (binary operator rpow). |
Series.combine(self, other, func[, fill_value]) |
Combine the Series with a Series or scalar according to func. |
Series.combine_first(self, other) |
Combine Series values, choosing the calling Series’s values first. |
Series.round(self[, decimals]) |
Round each value in a Series to the given number of decimals. |
Series.lt(self, other[, level, fill_value, axis]) |
Return Less than of series and other, element-wise (binary operator lt). |
Series.gt(self, other[, level, fill_value, axis]) |
Return Greater than of series and other, element-wise (binary operator gt). |
Series.le(self, other[, level, fill_value, axis]) |
Return Less than or equal to of series and other, element-wise (binary operator le). |
Series.ge(self, other[, level, fill_value, axis]) |
Return Greater than or equal to of series and other, element-wise (binary operator ge). |
Series.ne(self, other[, level, fill_value, axis]) |
Return Not equal to of series and other, element-wise (binary operator ne). |
Series.eq(self, other[, level, fill_value, axis]) |
Return Equal to of series and other, element-wise (binary operator eq). |
Series.product(self[, axis, skipna, level, …]) |
Return the product of the values for the requested axis. |
Series.dot(self, other) |
Compute the dot product between the Series and the columns of other. |
Function application, groupby & window¶
Series.apply(self, func[, convert_dtype, args]) |
Invoke function on values of Series. |
Series.agg(self, func[, axis]) |
Aggregate using one or more operations over the specified axis. |
Series.aggregate(self, func[, axis]) |
Aggregate using one or more operations over the specified axis. |
Series.transform(self, func[, axis]) |
Call func on self producing a Series with transformed values and that has the same axis length as self. |
Series.map(self, arg[, na_action]) |
Map values of Series according to input correspondence. |
Series.groupby(self[, by, axis, level, …]) |
Group DataFrame or Series using a mapper or by a Series of columns. |
Series.rolling(self, window[, min_periods, …]) |
Provide rolling window calculations. |
Series.expanding(self[, min_periods, …]) |
Provide expanding transformations. |
Series.ewm(self[, com, span, halflife, …]) |
Provide exponential weighted functions. |
Series.pipe(self, func, \*args, \*\*kwargs) |
Apply func(self, *args, **kwargs). |
Computations / descriptive stats¶
Series.abs(self) |
Return a Series/DataFrame with absolute numeric value of each element. |
Series.all(self[, axis, bool_only, skipna, …]) |
Return whether all elements are True, potentially over an axis. |
Series.any(self[, axis, bool_only, skipna, …]) |
Return whether any element is True, potentially over an axis. |
Series.autocorr(self[, lag]) |
Compute the lag-N autocorrelation. |
Series.between(self, left, right[, inclusive]) |
Return boolean Series equivalent to left <= series <= right. |
Series.clip(self[, lower, upper, axis, inplace]) |
Trim values at input threshold(s). |
Series.clip_lower(self, threshold[, axis, …]) |
(DEPRECATED) Trim values below a given threshold. |
Series.clip_upper(self, threshold[, axis, …]) |
(DEPRECATED) Trim values above a given threshold. |
Series.corr(self, other[, method, min_periods]) |
Compute correlation with other Series, excluding missing values. |
Series.count(self[, level]) |
Return number of non-NA/null observations in the Series. |
Series.cov(self, other[, min_periods]) |
Compute covariance with Series, excluding missing values. |
Series.cummax(self[, axis, skipna]) |
Return cumulative maximum over a DataFrame or Series axis. |
Series.cummin(self[, axis, skipna]) |
Return cumulative minimum over a DataFrame or Series axis. |
Series.cumprod(self[, axis, skipna]) |
Return cumulative product over a DataFrame or Series axis. |
Series.cumsum(self[, axis, skipna]) |
Return cumulative sum over a DataFrame or Series axis. |
Series.describe(self[, percentiles, …]) |
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. |
Series.diff(self[, periods]) |
First discrete difference of element. |
Series.factorize(self[, sort, na_sentinel]) |
Encode the object as an enumerated type or categorical variable. |
Series.kurt(self[, axis, skipna, level, …]) |
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.mad(self[, axis, skipna, level]) |
Return the mean absolute deviation of the values for the requested axis. |
Series.max(self[, axis, skipna, level, …]) |
Return the maximum of the values for the requested axis. |
Series.mean(self[, axis, skipna, level, …]) |
Return the mean of the values for the requested axis. |
Series.median(self[, axis, skipna, level, …]) |
Return the median of the values for the requested axis. |
Series.min(self[, axis, skipna, level, …]) |
Return the minimum of the values for the requested axis. |
Series.mode(self[, dropna]) |
Return the mode(s) of the dataset. |
Series.nlargest(self[, n, keep]) |
Return the largest n elements. |
Series.nsmallest(self[, n, keep]) |
Return the smallest n elements. |
Series.pct_change(self[, periods, …]) |
Percentage change between the current and a prior element. |
Series.prod(self[, axis, skipna, level, …]) |
Return the product of the values for the requested axis. |
Series.quantile(self[, q, interpolation]) |
Return value at the given quantile. |
Series.rank(self[, axis, method, …]) |
Compute numerical data ranks (1 through n) along axis. |
Series.sem(self[, axis, skipna, level, …]) |
Return unbiased standard error of the mean over requested axis. |
Series.skew(self[, axis, skipna, level, …]) |
Return unbiased skew over requested axis Normalized by N-1. |
Series.std(self[, axis, skipna, level, …]) |
Return sample standard deviation over requested axis. |
Series.sum(self[, axis, skipna, level, …]) |
Return the sum of the values for the requested axis. |
Series.var(self[, axis, skipna, level, …]) |
Return unbiased variance over requested axis. |
Series.kurtosis(self[, axis, skipna, level, …]) |
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.unique(self) |
Return unique values of Series object. |
Series.nunique(self[, dropna]) |
Return number of unique elements in the object. |
Series.is_unique |
Return boolean if values in the object are unique. |
Series.is_monotonic |
Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_increasing |
Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_decreasing |
Return boolean if values in the object are monotonic_decreasing. |
Series.value_counts(self[, normalize, sort, …]) |
Return a Series containing counts of unique values. |
Series.compound(self[, axis, skipna, level]) |
(DEPRECATED) Return the compound percentage of the values for the requested axis. |
Reindexing / selection / label manipulation¶
Series.align(self, other[, join, axis, …]) |
Align two objects on their axes with the specified join method for each axis Index. |
Series.drop(self[, labels, axis, index, …]) |
Return Series with specified index labels removed. |
Series.droplevel(self, level[, axis]) |
Return DataFrame with requested index / column level(s) removed. |
Series.drop_duplicates(self[, keep, inplace]) |
Return Series with duplicate values removed. |
Series.duplicated(self[, keep]) |
Indicate duplicate Series values. |
Series.equals(self, other) |
Test whether two objects contain the same elements. |
Series.first(self, offset) |
Convenience method for subsetting initial periods of time series data based on a date offset. |
Series.head(self[, n]) |
Return the first n rows. |
Series.idxmax(self[, axis, skipna]) |
Return the row label of the maximum value. |
Series.idxmin(self[, axis, skipna]) |
Return the row label of the minimum value. |
Series.isin(self, values) |
Check whether values are contained in Series. |
Series.last(self, offset) |
Convenience method for subsetting final periods of time series data based on a date offset. |
Series.reindex(self[, index]) |
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. |
Series.reindex_like(self, other[, method, …]) |
Return an object with matching indices as other object. |
Series.rename(self[, index]) |
Alter Series index labels or name. |
Series.rename_axis(self[, mapper, index, …]) |
Set the name of the axis for the index or columns. |
Series.reset_index(self[, level, drop, …]) |
Generate a new DataFrame or Series with the index reset. |
Series.sample(self[, n, frac, replace, …]) |
Return a random sample of items from an axis of object. |
Series.set_axis(self, labels[, axis, inplace]) |
Assign desired index to given axis. |
Series.take(self, indices[, axis, is_copy]) |
Return the elements in the given positional indices along an axis. |
Series.tail(self[, n]) |
Return the last n rows. |
Series.truncate(self[, before, after, axis, …]) |
Truncate a Series or DataFrame before and after some index value. |
Series.where(self, cond[, other, inplace, …]) |
Replace values where the condition is False. |
Series.mask(self, cond[, other, inplace, …]) |
Replace values where the condition is True. |
Series.add_prefix(self, prefix) |
Prefix labels with string prefix. |
Series.add_suffix(self, suffix) |
Suffix labels with string suffix. |
Series.filter(self[, items, like, regex, axis]) |
Subset rows or columns of dataframe according to labels in the specified index. |
Missing data handling¶
Series.isna(self) |
Detect missing values. |
Series.notna(self) |
Detect existing (non-missing) values. |
Series.dropna(self[, axis, inplace]) |
Return a new Series with missing values removed. |
Series.fillna(self[, value, method, axis, …]) |
Fill NA/NaN values using the specified method. |
Series.interpolate(self[, method, axis, …]) |
Interpolate values according to different methods. |
Reshaping, sorting¶
Series.argsort(self[, axis, kind, order]) |
Override ndarray.argsort. |
Series.argmin(self[, axis, skipna]) |
(DEPRECATED) Return the row label of the minimum value. |
Series.argmax(self[, axis, skipna]) |
(DEPRECATED) Return the row label of the maximum value. |
Series.reorder_levels(self, order) |
Rearrange index levels using input order. |
Series.sort_values(self[, axis, ascending, …]) |
Sort by the values. |
Series.sort_index(self[, axis, level, …]) |
Sort Series by index labels. |
Series.swaplevel(self[, i, j, copy]) |
Swap levels i and j in a MultiIndex. |
Series.unstack(self[, level, fill_value]) |
Unstack, a.k.a. |
Series.searchsorted(self, value[, side, sorter]) |
Find indices where elements should be inserted to maintain order. |
Series.ravel(self[, order]) |
Return the flattened underlying data as an ndarray. |
Series.repeat(self, repeats[, axis]) |
Repeat elements of a Series. |
Series.squeeze(self[, axis]) |
Squeeze 1 dimensional axis objects into scalars. |
Series.view(self[, dtype]) |
Create a new view of the Series. |
Combining / joining / merging¶
Series.append(self, to_append[, …]) |
Concatenate two or more Series. |
Series.replace(self[, to_replace, value, …]) |
Replace values given in to_replace with value. |
Series.update(self, other) |
Modify Series in place using non-NA values from passed Series. |
Accessors¶
Pandas provides dtype-specific methods under various accessors.
These are separate namespaces within Series that only apply
to specific data types.
| Data Type | Accessor |
|---|---|
| Datetime, Timedelta, Period | dt |
| String | str |
| Categorical | cat |
| Sparse | sparse |
Datetimelike properties¶
Series.dt can be used to access the values of the series as
datetimelike and return several properties.
These can be accessed like Series.dt.<property>.
Datetime properties¶
Series.dt.date |
Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). |
Series.dt.time |
Returns numpy array of datetime.time. |
Series.dt.timetz |
Returns numpy array of datetime.time also containing timezone information. |
Series.dt.year |
The year of the datetime. |
Series.dt.month |
The month as January=1, December=12. |
Series.dt.day |
The days of the datetime. |
Series.dt.hour |
The hours of the datetime. |
Series.dt.minute |
The minutes of the datetime. |
Series.dt.second |
The seconds of the datetime. |
Series.dt.microsecond |
The microseconds of the datetime. |
Series.dt.nanosecond |
The nanoseconds of the datetime. |
Series.dt.week |
The week ordinal of the year. |
Series.dt.weekofyear |
The week ordinal of the year. |
Series.dt.dayofweek |
The day of the week with Monday=0, Sunday=6. |
Series.dt.weekday |
The day of the week with Monday=0, Sunday=6. |
Series.dt.dayofyear |
The ordinal day of the year. |
Series.dt.quarter |
The quarter of the date. |
Series.dt.is_month_start |
Indicates whether the date is the first day of the month. |
Series.dt.is_month_end |
Indicates whether the date is the last day of the month. |
Series.dt.is_quarter_start |
Indicator for whether the date is the first day of a quarter. |
Series.dt.is_quarter_end |
Indicator for whether the date is the last day of a quarter. |
Series.dt.is_year_start |
Indicate whether the date is the first day of a year. |
Series.dt.is_year_end |
Indicate whether the date is the last day of the year. |
Series.dt.is_leap_year |
Boolean indicator if the date belongs to a leap year. |
Series.dt.daysinmonth |
The number of days in the month. |
Series.dt.days_in_month |
The number of days in the month. |
Series.dt.tz |
Return timezone, if any. |
Series.dt.freq |
Datetime methods¶
Series.dt.to_period(self, \*args, \*\*kwargs) |
Cast to PeriodArray/Index at a particular frequency. |
Series.dt.to_pydatetime(self) |
Return the data as an array of native Python datetime objects. |
Series.dt.tz_localize(self, \*args, \*\*kwargs) |
Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. |
Series.dt.tz_convert(self, \*args, \*\*kwargs) |
Convert tz-aware Datetime Array/Index from one time zone to another. |
Series.dt.normalize(self, \*args, \*\*kwargs) |
Convert times to midnight. |
Series.dt.strftime(self, \*args, \*\*kwargs) |
Convert to Index using specified date_format. |
Series.dt.round(self, \*args, \*\*kwargs) |
Perform round operation on the data to the specified freq. |
Series.dt.floor(self, \*args, \*\*kwargs) |
Perform floor operation on the data to the specified freq. |
Series.dt.ceil(self, \*args, \*\*kwargs) |
Perform ceil operation on the data to the specified freq. |
Series.dt.month_name(self, \*args, \*\*kwargs) |
Return the month names of the DateTimeIndex with specified locale. |
Series.dt.day_name(self, \*args, \*\*kwargs) |
Return the day names of the DateTimeIndex with specified locale. |
Period properties¶
Series.dt.qyear |
|
Series.dt.start_time |
|
Series.dt.end_time |
Timedelta properties¶
Series.dt.days |
Number of days for each element. |
Series.dt.seconds |
Number of seconds (>= 0 and less than 1 day) for each element. |
Series.dt.microseconds |
Number of microseconds (>= 0 and less than 1 second) for each element. |
Series.dt.nanoseconds |
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. |
Series.dt.components |
Return a Dataframe of the components of the Timedeltas. |
Timedelta methods¶
Series.dt.to_pytimedelta(self) |
Return an array of native datetime.timedelta objects. |
Series.dt.total_seconds(self, \*args, \*\*kwargs) |
Return total duration of each element expressed in seconds. |
String handling¶
Series.str can be used to access the values of the series as
strings and apply several methods to it. These can be accessed like
Series.str.<function/property>.
Series.str.capitalize(self) |
Convert strings in the Series/Index to be capitalized. |
Series.str.casefold(self) |
Convert strings in the Series/Index to be casefolded. |
Series.str.cat(self[, others, sep, na_rep, join]) |
Concatenate strings in the Series/Index with given separator. |
Series.str.center(self, width[, fillchar]) |
Filling left and right side of strings in the Series/Index with an additional character. |
Series.str.contains(self, pat[, case, …]) |
Test if pattern or regex is contained within a string of a Series or Index. |
Series.str.count(self, pat[, flags]) |
Count occurrences of pattern in each string of the Series/Index. |
Series.str.decode(self, encoding[, errors]) |
Decode character string in the Series/Index using indicated encoding. |
Series.str.encode(self, encoding[, errors]) |
Encode character string in the Series/Index using indicated encoding. |
Series.str.endswith(self, pat[, na]) |
Test if the end of each string element matches a pattern. |
Series.str.extract(self, pat[, flags, expand]) |
Extract capture groups in the regex pat as columns in a DataFrame. |
Series.str.extractall(self, pat[, flags]) |
For each subject string in the Series, extract groups from all matches of regular expression pat. |
Series.str.find(self, sub[, start, end]) |
Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.findall(self, pat[, flags]) |
Find all occurrences of pattern or regular expression in the Series/Index. |
Series.str.get(self, i) |
Extract element from each component at specified position. |
Series.str.index(self, sub[, start, end]) |
Return lowest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.join(self, sep) |
Join lists contained as elements in the Series/Index with passed delimiter. |
Series.str.len(self) |
Compute the length of each element in the Series/Index. |
Series.str.ljust(self, width[, fillchar]) |
Filling right side of strings in the Series/Index with an additional character. |
Series.str.lower(self) |
Convert strings in the Series/Index to lowercase. |
Series.str.lstrip(self[, to_strip]) |
Remove leading and trailing characters. |
Series.str.match(self, pat[, case, flags, na]) |
Determine if each string matches a regular expression. |
Series.str.normalize(self, form) |
Return the Unicode normal form for the strings in the Series/Index. |
Series.str.pad(self, width[, side, fillchar]) |
Pad strings in the Series/Index up to width. |
Series.str.partition(self[, sep, expand]) |
Split the string at the first occurrence of sep. |
Series.str.repeat(self, repeats) |
Duplicate each string in the Series or Index. |
Series.str.replace(self, pat, repl[, n, …]) |
Replace occurrences of pattern/regex in the Series/Index with some other string. |
Series.str.rfind(self, sub[, start, end]) |
Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.rindex(self, sub[, start, end]) |
Return highest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.rjust(self, width[, fillchar]) |
Filling left side of strings in the Series/Index with an additional character. |
Series.str.rpartition(self[, sep, expand]) |
Split the string at the last occurrence of sep. |
Series.str.rstrip(self[, to_strip]) |
Remove leading and trailing characters. |
Series.str.slice(self[, start, stop, step]) |
Slice substrings from each element in the Series or Index. |
Series.str.slice_replace(self[, start, …]) |
Replace a positional slice of a string with another value. |
Series.str.split(self[, pat, n, expand]) |
Split strings around given separator/delimiter. |
Series.str.rsplit(self[, pat, n, expand]) |
Split strings around given separator/delimiter. |
Series.str.startswith(self, pat[, na]) |
Test if the start of each string element matches a pattern. |
Series.str.strip(self[, to_strip]) |
Remove leading and trailing characters. |
Series.str.swapcase(self) |
Convert strings in the Series/Index to be swapcased. |
Series.str.title(self) |
Convert strings in the Series/Index to titlecase. |
Series.str.translate(self, table) |
Map all characters in the string through the given mapping table. |
Series.str.upper(self) |
Convert strings in the Series/Index to uppercase. |
Series.str.wrap(self, width, \*\*kwargs) |
Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. |
Series.str.zfill(self, width) |
Pad strings in the Series/Index by prepending ‘0’ characters. |
Series.str.isalnum(self) |
Check whether all characters in each string are alphanumeric. |
Series.str.isalpha(self) |
Check whether all characters in each string are alphabetic. |
Series.str.isdigit(self) |
Check whether all characters in each string are digits. |
Series.str.isspace(self) |
Check whether all characters in each string are whitespace. |
Series.str.islower(self) |
Check whether all characters in each string are lowercase. |
Series.str.isupper(self) |
Check whether all characters in each string are uppercase. |
Series.str.istitle(self) |
Check whether all characters in each string are titlecase. |
Series.str.isnumeric(self) |
Check whether all characters in each string are numeric. |
Series.str.isdecimal(self) |
Check whether all characters in each string are decimal. |
Series.str.get_dummies(self[, sep]) |
Split each string in the Series by sep and return a DataFrame of dummy/indicator variables. |
Categorical accessor¶
Categorical-dtype specific methods and attributes are available under
the Series.cat accessor.
Series.cat.categories |
The categories of this categorical. |
Series.cat.ordered |
Whether the categories have an ordered relationship. |
Series.cat.codes |
Return Series of codes as well as the index. |
Series.cat.rename_categories(self, \*args, …) |
Rename categories. |
Series.cat.reorder_categories(self, \*args, …) |
Reorder categories as specified in new_categories. |
Series.cat.add_categories(self, \*args, …) |
Add new categories. |
Series.cat.remove_categories(self, \*args, …) |
Remove the specified categories. |
Series.cat.remove_unused_categories(self, …) |
Remove categories which are not used. |
Series.cat.set_categories(self, \*args, …) |
Set the categories to the specified new_categories. |
Series.cat.as_ordered(self, \*args, \*\*kwargs) |
Set the Categorical to be ordered. |
Series.cat.as_unordered(self, \*args, \*\*kwargs) |
Set the Categorical to be unordered. |
Sparse accessor¶
Sparse-dtype specific methods and attributes are provided under the
Series.sparse accessor.
Series.sparse.npoints |
The number of non- fill_value points. |
Series.sparse.density |
The percent of non- fill_value points, as decimal. |
Series.sparse.fill_value |
Elements in data that are fill_value are not stored. |
Series.sparse.sp_values |
An ndarray containing the non- fill_value values. |
Series.sparse.from_coo(A[, dense_index]) |
Create a SparseSeries from a scipy.sparse.coo_matrix. |
Series.sparse.to_coo(self[, row_levels, …]) |
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
Plotting¶
Series.plot is both a callable method and a namespace attribute for
specific plotting methods of the form Series.plot.<kind>.
Series.plot([kind, ax, figsize, ….]) |
Series plotting accessor and method |
Series.plot.area(self[, x, y]) |
Draw a stacked area plot. |
Series.plot.bar(self[, x, y]) |
Vertical bar plot. |
Series.plot.barh(self[, x, y]) |
Make a horizontal bar plot. |
Series.plot.box(self[, by]) |
Make a box plot of the DataFrame columns. |
Series.plot.density(self[, bw_method, ind]) |
Generate Kernel Density Estimate plot using Gaussian kernels. |
Series.plot.hist(self[, by, bins]) |
Draw one histogram of the DataFrame’s columns. |
Series.plot.kde(self[, bw_method, ind]) |
Generate Kernel Density Estimate plot using Gaussian kernels. |
Series.plot.line(self[, x, y]) |
Plot Series or DataFrame as lines. |
Series.plot.pie(self, \*\*kwargs) |
Generate a pie plot. |
Series.hist(self[, by, ax, grid, …]) |
Draw histogram of the input series using matplotlib. |
Serialization / IO / conversion¶
Series.to_pickle(self, path[, compression, …]) |
Pickle (serialize) object to file. |
Series.to_csv(self, \*args, \*\*kwargs) |
Write object to a comma-separated values (csv) file. |
Series.to_dict(self[, into]) |
Convert Series to {label -> value} dict or dict-like object. |
Series.to_excel(self, excel_writer[, …]) |
Write object to an Excel sheet. |
Series.to_frame(self[, name]) |
Convert Series to DataFrame. |
Series.to_xarray(self) |
Return an xarray object from the pandas object. |
Series.to_hdf(self, path_or_buf, key, \*\*kwargs) |
Write the contained data to an HDF5 file using HDFStore. |
Series.to_sql(self, name, con[, schema, …]) |
Write records stored in a DataFrame to a SQL database. |
Series.to_msgpack(self[, path_or_buf, encoding]) |
(DEPRECATED) Serialize object to input file path using msgpack format. |
Series.to_json(self[, path_or_buf, orient, …]) |
Convert the object to a JSON string. |
Series.to_sparse(self[, kind, fill_value]) |
(DEPRECATED) Convert Series to SparseSeries. |
Series.to_dense(self) |
(DEPRECATED) Return dense representation of Series/DataFrame (as opposed to sparse). |
Series.to_string(self[, buf, na_rep, …]) |
Render a string representation of the Series. |
Series.to_clipboard(self[, excel, sep]) |
Copy object to the system clipboard. |
Series.to_latex(self[, buf, columns, …]) |
Render an object to a LaTeX tabular environment table. |
Sparse¶
SparseSeries.to_coo(self[, row_levels, …]) |
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
SparseSeries.from_coo(A[, dense_index]) |
Create a SparseSeries from a scipy.sparse.coo_matrix. |