pandas.Series.notnull¶
-
Series.notnull(self)[source]¶ Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''ornumpy.infare not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True). NA values, such as None ornumpy.NaN, get mapped to False values.Returns: - Series
Mask of bool values for each element in Series that indicates whether an element is not an NA value.
See also
Series.notnull- Alias of notna.
Series.isna- Boolean inverse of notna.
Series.dropna- Omit axes labels with missing values.
notna- Top-level notna.
Examples
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool